Aliases: C62.2C4, C32⋊4M4(2), C32⋊2C8⋊4C2, C3⋊Dic3.6C4, C22.(C32⋊C4), C3⋊Dic3.10C22, (C3×C6).6(C2×C4), C2.6(C2×C32⋊C4), (C2×C3⋊Dic3).7C2, SmallGroup(144,135)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C32 — C3×C6 — C3⋊Dic3 — C32⋊2C8 — C62.C4 |
Generators and relations for C62.C4
G = < a,b,c | a6=b6=1, c4=b3, ab=ba, cac-1=a-1b, cbc-1=a4b >
Character table of C62.C4
class | 1 | 2A | 2B | 3A | 3B | 4A | 4B | 4C | 6A | 6B | 6C | 6D | 6E | 6F | 8A | 8B | 8C | 8D | |
size | 1 | 1 | 2 | 4 | 4 | 9 | 9 | 18 | 4 | 4 | 4 | 4 | 4 | 4 | 18 | 18 | 18 | 18 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | -i | i | i | -i | linear of order 4 |
ρ6 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | i | -i | i | -i | linear of order 4 |
ρ7 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | i | -i | -i | i | linear of order 4 |
ρ8 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -i | i | -i | i | linear of order 4 |
ρ9 | 2 | -2 | 0 | 2 | 2 | 2i | -2i | 0 | 0 | -2 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | complex lifted from M4(2) |
ρ10 | 2 | -2 | 0 | 2 | 2 | -2i | 2i | 0 | 0 | -2 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | complex lifted from M4(2) |
ρ11 | 4 | 4 | -4 | -2 | 1 | 0 | 0 | 0 | 2 | 1 | -1 | -1 | 2 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from C2×C32⋊C4 |
ρ12 | 4 | 4 | 4 | -2 | 1 | 0 | 0 | 0 | -2 | 1 | 1 | 1 | -2 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from C32⋊C4 |
ρ13 | 4 | 4 | 4 | 1 | -2 | 0 | 0 | 0 | 1 | -2 | -2 | -2 | 1 | 1 | 0 | 0 | 0 | 0 | orthogonal lifted from C32⋊C4 |
ρ14 | 4 | 4 | -4 | 1 | -2 | 0 | 0 | 0 | -1 | -2 | 2 | 2 | -1 | 1 | 0 | 0 | 0 | 0 | orthogonal lifted from C2×C32⋊C4 |
ρ15 | 4 | -4 | 0 | 1 | -2 | 0 | 0 | 0 | -3 | 2 | 0 | 0 | 3 | -1 | 0 | 0 | 0 | 0 | symplectic faithful, Schur index 2 |
ρ16 | 4 | -4 | 0 | -2 | 1 | 0 | 0 | 0 | 0 | -1 | -3 | 3 | 0 | 2 | 0 | 0 | 0 | 0 | symplectic faithful, Schur index 2 |
ρ17 | 4 | -4 | 0 | 1 | -2 | 0 | 0 | 0 | 3 | 2 | 0 | 0 | -3 | -1 | 0 | 0 | 0 | 0 | symplectic faithful, Schur index 2 |
ρ18 | 4 | -4 | 0 | -2 | 1 | 0 | 0 | 0 | 0 | -1 | 3 | -3 | 0 | 2 | 0 | 0 | 0 | 0 | symplectic faithful, Schur index 2 |
(1 9 21)(2 6)(3 23 11)(4 8)(5 13 17)(7 19 15)(10 14)(12 16)(18 22)(20 24)
(1 13 21 5 9 17)(2 18 10 6 22 14)(3 19 11 7 23 15)(4 16 24 8 12 20)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)
G:=sub<Sym(24)| (1,9,21)(2,6)(3,23,11)(4,8)(5,13,17)(7,19,15)(10,14)(12,16)(18,22)(20,24), (1,13,21,5,9,17)(2,18,10,6,22,14)(3,19,11,7,23,15)(4,16,24,8,12,20), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)>;
G:=Group( (1,9,21)(2,6)(3,23,11)(4,8)(5,13,17)(7,19,15)(10,14)(12,16)(18,22)(20,24), (1,13,21,5,9,17)(2,18,10,6,22,14)(3,19,11,7,23,15)(4,16,24,8,12,20), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24) );
G=PermutationGroup([[(1,9,21),(2,6),(3,23,11),(4,8),(5,13,17),(7,19,15),(10,14),(12,16),(18,22),(20,24)], [(1,13,21,5,9,17),(2,18,10,6,22,14),(3,19,11,7,23,15),(4,16,24,8,12,20)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24)]])
G:=TransitiveGroup(24,207);
C62.C4 is a maximal subgroup of
Dic3≀C2 C62.2Q8 C3⋊Dic3.D4 (C2×C62).C4 C62.12D4 C62.15D4 C3⋊S3⋊M4(2) C62.(C2×C4) C33⋊M4(2) C33⋊12M4(2)
C62.C4 is a maximal quotient of
C32⋊2C8⋊C4 C32⋊5(C4⋊C8) C62⋊3C8 He3⋊4M4(2) C33⋊M4(2) C33⋊12M4(2)
Matrix representation of C62.C4 ►in GL4(𝔽5) generated by
4 | 0 | 0 | 1 |
0 | 4 | 0 | 0 |
0 | 0 | 4 | 0 |
4 | 0 | 0 | 0 |
1 | 0 | 0 | 4 |
0 | 1 | 3 | 0 |
0 | 3 | 0 | 0 |
1 | 0 | 0 | 0 |
0 | 3 | 0 | 0 |
1 | 0 | 0 | 4 |
0 | 0 | 0 | 2 |
0 | 0 | 1 | 0 |
G:=sub<GL(4,GF(5))| [4,0,0,4,0,4,0,0,0,0,4,0,1,0,0,0],[1,0,0,1,0,1,3,0,0,3,0,0,4,0,0,0],[0,1,0,0,3,0,0,0,0,0,0,1,0,4,2,0] >;
C62.C4 in GAP, Magma, Sage, TeX
C_6^2.C_4
% in TeX
G:=Group("C6^2.C4");
// GroupNames label
G:=SmallGroup(144,135);
// by ID
G=gap.SmallGroup(144,135);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-3,3,24,121,50,3364,256,4613,881]);
// Polycyclic
G:=Group<a,b,c|a^6=b^6=1,c^4=b^3,a*b=b*a,c*a*c^-1=a^-1*b,c*b*c^-1=a^4*b>;
// generators/relations
Export
Subgroup lattice of C62.C4 in TeX
Character table of C62.C4 in TeX